Lifted Probabilistic Inference with Counting Formulas
نویسندگان
چکیده
Lifted inference algorithms exploit repeated structure in probabilistic models to answer queries efficiently. Previous work such as de Salvo Braz et al.’s first-order variable elimination (FOVE) has focused on the sharing of potentials across interchangeable random variables. In this paper, we also exploit interchangeability within individual potentials by introducing counting formulas, which indicate how many of the random variables in a set have each possible value. We present a new lifted inference algorithm, C-FOVE, that not only handles counting formulas in its input, but also creates counting formulas for use in intermediate potentials. C-FOVE can be described succinctly in terms of six operators, along with heuristics for when to apply them. Because counting formulas capture dependencies among large numbers of variables compactly, C-FOVE achieves asymptotic speed improvements compared to FOVE.
منابع مشابه
Generalized Counting for Lifted Variable Elimination
Lifted probabilistic inference methods exploit symmetries in the structure of probabilistic models to perform inference more efficiently. In lifted variable elimination, the symmetry among a group of interchangeable random variables is captured by counting formulas, and exploited by operations that handle such formulas. In this paper we generalize the structure of counting formulas and present ...
متن کاملUnderstanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting
In this paper we study lifted inference for the Weighted First-Order Model Counting problem (WFOMC), which counts the assignments that satisfy a given sentence in firstorder logic (FOL); it has applications in Statistical Relational Learning (SRL) and Probabilistic Databases (PDB). We present several results. First, we describe a lifted inference algorithm that generalizes prior approaches in S...
متن کاملLifted Inference for Probabilistic Logic Programs
First-order model counting emerged recently as a novel reasoning task, at the core of efficient algorithms for probabilistic logics such as MLNs. For certain subsets of first-order logic, lifted model counters were shown to run in time polynomial in the number of objects in the domain of discourse, where propositional model counters require exponential time. However, these guarantees apply only...
متن کاملLifted Probabilistic Inference: An MCMC Perspective
The general consensus seems to be that lifted inference is concerned with exploiting model symmetries and grouping indistinguishable objects at inference time. Since first-order probabilistic formalisms are essentially template languages providing a more compact representation of a corresponding ground model, lifted inference tends to work especially well in these models. We show that the notio...
متن کاملLower complexity bounds for lifted inference
One of the big challenges in the development of probabilistic relational (or probabilistic logical) modeling and learning frameworks is the design of inference techniques that operate on the level of the abstract model representation language, rather than on the level of ground, propositional instances of the model. Numerous approaches for such “lifted inference” techniques have been proposed. ...
متن کامل